11 research outputs found

    Effects of Replanting and Retention of Mature Oil Palm Riparian Buffers on Ecosystem Functioning in Oil Palm Plantations

    Get PDF
    Oil palm plantations are a major agricultural land use in Southeast Asia. In the coming decades large areas of mature oil palm will be cleared and replanted. To inform more sustainable long-term production in this globally important crop, it is crucial we understand how replanting impacts ecosystem functions and services. We investigated whether several production-relevant ecosystems functions (dung removal, soil mesofauna feeding activity, herbivory, herbivore predation, and seed predation), and the simultaneous delivery of all functions (ecosystem multifunctionality), vary between recently-replanted oil palm (1–4 years) and mature oil palm (23–30 years) areas. Following new in-country and Roundtable on Sustainable Palm Oil (RSPO) guidelines, riparian buffers of mature oil palm, in which subsequent natural regrowth is allowed, are being preserved during the replanting cycle in plantations that lack natural forest reserves. We investigated whether or not mature oil palm riparian buffers maintain levels of ecosystem functioning beneficial for palm oil production. Only one function (herbivory) differed between mature and replanted areas, with higher levels of herbivory found in recently replanted oil palm. There was no difference in ecosystem multifunctionality between mature and recently-replanted oil palm. Mature oil palm riparian buffers were found to be valuable for maintaining lower levels of herbivory than recently-replanted oil palm. However, no other functions, nor ecosystem multifunctionality, differed between the mature oil palm riparian buffers and recently-replanted oil palm. The results of this study suggest that replanting has limited impacts on the ecosystem functions we considered. Furthermore, they suggest mature oil palm riparian buffers do not have negative impacts on production-relevant ecosystem functions in oil palm landscapes.This project was made possible through funding from SMARTRI; the UK Natural Environment Research Council (NERC), the Heron-Allen Travel Scholarship, Lady Margaret Hall; and the University of Oxford Zoology Department. ES was funded under UK Natural Environment Research Council grant (NE/K016407/1). The BEFTA Programme was funded by The Isaac Newton Trust Cambridge, Golden-Agri Resources, and the UK Natural Environment Research Council grant (NE/P00458X/1)

    Magnetic field spectral evolution in the inner heliosphere

    Full text link
    Parker Solar Probe and Solar Orbiter data are used to investigate the radial evolution of magnetic turbulence between 0.06 â‰ČR â‰Č10.06 ~ \lesssim R ~\lesssim 1 au. The spectrum is studied as a function of scale, normalized to the ion inertial scale did_{i}. In the vicinity of the Sun, the inertial range is limited to a narrow range of scales and exhibits a power-law exponent of, αB=−3/2\alpha_{B} = -3/2, independent of plasma parameters. The inertial range grows with distance, progressively extending to larger spatial scales, while steepening towards a αB=−5/3\alpha_{B} =-5/3 scaling. It is observed that spectra for intervals with large magnetic energy excesses and low Alfv\'enic content steepen significantly with distance, in contrast to highly Alfv\'enic intervals that retain their near-Sun scaling. The occurrence of steeper spectra in slower wind streams may be attributed to the observed positive correlation between solar wind speed and Alfv\'enicity.Comment: Accepted to APJ letters with minor revision

    Managing Oil Palm Plantations More Sustainably: Large-Scale Experiments Within the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme

    Get PDF
    Conversion of tropical forest to agriculture results in reduced habitat heterogeneity, and associated declines in biodiversity and ecosystem functions. Management strategies to increase biodiversity in agricultural landscapes have therefore often focused on increasing habitat complexity; however, the large-scale, long-term ecological experiments that are needed to test the effects of these strategies are rare in tropical systems. Oil palm (Elaeis guineensis Jacq.)—one of the most widespread and important tropical crops—offers substantial potential for developing wildlife-friendly management strategies because of its long rotation cycles and tree-like structure. Although there is awareness of the need to increase sustainability, practical options for how best to manage oil palm plantations, for benefits to both the environment and crop productivity, have received little research attention. In this paper we introduce the Biodiversity and Ecosystem Function in Tropical Agriculture (BEFTA) Programme: a long-term research collaboration between academia and industry in Sumatra, Indonesia. The BEFTA Programme aims to better understand the oil palm agroecosystem and test sustainability strategies. We hypothesise that adjustments to oil palm management could increase structural complexity, stabilise microclimate, and reduce reliance on chemical inputs, thereby helping to improve levels of biodiversity and ecosystem functions. The Programme has established four major components: (1) assessing variability within the plantation under business-as-usual conditions; (2) the BEFTA Understory Vegetation Project, which tests the effects of varying herbicide regimes; (3) the Riparian Ecosystem Restoration in Tropical Agriculture (RERTA) Project, which tests strategies for restoring riparian habitat; and (4) support for additional collaborative projects within the Programme landscape. Across all projects, we are measuring environmental conditions, biodiversity, and ecosystem functions. We also measure oil palm yield and production costs, in order to assess whether suggested sustainability strategies are feasible from an agronomic perspective. Early results show that oil palm plantation habitat is more variable than might be expected from a monoculture crop, and that everyday vegetation management decisions have significant impacts on habitat structure. The BEFTA Programme highlights the value of large-scale collaborative projects for understanding tropical agricultural systems, and offers a highly valuable experimental set-up for improving our understanding of practices to manage oil palm more sustainably

    Magnetic Field Spectral Evolution in the Inner Heliosphere

    No full text
    International audienceParker Solar Probe and Solar Orbiter data are used to investigate the radial evolution of magnetic turbulence between 0.06 â‰Č R â‰Č 1 au. The spectrum is studied as a function of scale, normalized to the ion inertial scale d i . In the vicinity of the Sun, the inertial range is limited to a narrow range of scales and exhibits a power-law exponent of, α B = -3/2, independent of plasma parameters. The inertial range grows with distance, progressively extending to larger spatial scales, while steepening toward a α B = -5/3 scaling. It is observed that spectra for intervals with large magnetic energy excesses and low AlfvĂ©nic content steepen significantly with distance, in contrast to highly AlfvĂ©nic intervals that retain their near-Sun scaling. The occurrence of steeper spectra in slower wind streams may be attributed to the observed positive correlation between solar wind speed and AlfvĂ©nicity
    corecore